Production-Grade Agentic System Implementation Plan
Executive Summary
This document provides a comprehensive work breakdown structure (WBS) for implementing all Seven Layers of Production-Grade Agentic Systems in Engram. Based on the maturity assessment (current: ⭐⭐⭐☆☆ 3.0/5.0), this plan prioritizes critical gaps and provides actionable tasks with dependencies.
Target Maturity: ⭐⭐⭐⭐⭐ (5.0/5.0)
Current State Summary
| Layer | Current Rating | Target Rating | Priority | Estimated Effort |
|---|---|---|---|---|
| Layer 1: Interaction | ⭐⭐⭐☆☆ (3.0) | ⭐⭐⭐⭐⭐ (5.0) | High | 4 weeks |
| Layer 2: Orchestration | ⭐⭐⭐⭐☆ (3.75) | ⭐⭐⭐⭐⭐ (5.0) | Medium | 3 weeks |
| Layer 3: Cognition | ⭐⭐⭐☆☆ (2.67) | ⭐⭐⭐⭐⭐ (5.0) | High | 4 weeks |
| Layer 4: Memory | ⭐⭐⭐☆☆ (3.33) | ⭐⭐⭐⭐⭐ (5.0) | Medium | 3 weeks |
| Layer 5: Tools | ⭐⭐⭐☆☆ (3.0) | ⭐⭐⭐⭐⭐ (5.0) | Medium | 3 weeks |
| Layer 6: Guardrails | ⭐☆☆☆☆ (0.8) | ⭐⭐⭐⭐⭐ (5.0) | CRITICAL | 4 weeks |
| Layer 7: Observability | ⭐⭐⭐☆☆ (3.0) | ⭐⭐⭐⭐⭐ (5.0) | High | 3 weeks |
Total Estimated Effort: 24 weeks (6 months)
Agent Integration with GitHub Projects
Elena and Marcus are authorized to interact with GitHub Projects to track implementation progress. Both agents have access to:
- ✅ Create GitHub issues for tasks
- ✅ Update issue status and progress
- ✅ Query project status and metrics
- ✅ List assigned tasks
- ✅ Close completed tasks
Authorization: Agents use a GitHub Personal Access Token (configured via GITHUB_TOKEN environment variable) with repo, read:project, and write:project scopes.
System Awareness: The Engram system is aware of GitHub Projects progress through:
- Agent queries to
get_project_statustool - Automatic issue creation for new tasks
- Progress tracking via issue state (open/closed)
- Status reports generated from GitHub data
See docs/GitHub-Integration-Authorization.md for detailed setup and authorization model.
Phase 1: Critical Security & Safety (Weeks 1-4)
🚨 Layer 6: Guardrails - CRITICAL PRIORITY
Current State: ⭐☆☆☆☆ (0.8/5.0) - MUST FIX BEFORE PRODUCTION
Task 6.1: Input Guardrails Implementation
Priority: Critical | Effort: 1.5 weeks | Dependencies: None
Sub-tasks:
- 6.1.1 Create
backend/guardrails/input_guard.pymodule- Implement prompt injection detection using Rebuff or Microsoft Presidio
- Add jailbreak pattern detection (DAN mode, role-playing, etc.)
- Create
detect_prompt_injection(text: str) -> boolfunction - Add logging for all filtered inputs (audit trail)
- 6.1.2 PII Redaction Middleware
- Integrate Microsoft Presidio or similar PII detection library
- Create
redact_pii(text: str) -> strfunction - Support: SSN, credit cards, email addresses, IP addresses, phone numbers
- Add configuration for custom PII patterns (internal IDs, etc.)
- 6.1.3 Input Validation Pipeline
- Create
InputGuardrailsclass withvalidate_input(text: str) -> GuardResult - Integrate into FastAPI middleware (
backend/api/middleware/guardrails.py) - Apply to all
/api/v1/chat/*and/api/v1/agents/*endpoints - Return structured errors (don’t expose detection patterns)
- Create
Acceptance Criteria:
- All user inputs pass through guardrails before reaching LLM
- Prompt injection attempts are detected and logged
- PII is automatically redacted before LLM calls
- Audit log contains all filtered inputs with timestamps
Files to Create/Modify:
backend/guardrails/__init__.py(new)backend/guardrails/input_guard.py(new)backend/api/middleware/guardrails.py(new)backend/api/routers/chat.py(modify - add middleware)backend/api/routers/agents.py(modify - add middleware)
Task 6.2: Execution Guardrails
Priority: High | Effort: 1 week | Dependencies: 6.1
Sub-tasks:
- 6.2.1 Rate Limiting Implementation
- Add Redis-based rate limiting (
backend/guardrails/rate_limiter.py) - Per-user limits: 100 requests/hour, 10 requests/minute
- Per-tenant limits: 1000 requests/hour
- Per-session limits: 50 requests/hour
- Return 429 with retry-after header
- Add Redis-based rate limiting (
- 6.2.2 Policy Engine (Open Policy Agent)
- Deploy OPA server or use OPA-as-a-Service
- Create policy files for tool call restrictions:
policies/tool_call_policy.rego- No delete operationspolicies/external_access_policy.rego- No external emails/APIspolicies/data_access_policy.rego- Tenant-scoped data access
- Integrate OPA client into
backend/guardrails/policy_engine.py - Validate tool calls before execution
- 6.2.3 Cost Limits
- Track token usage per session in workflow state
- Implement cost calculation (tokens × model cost)
- Add session cost limits: $2.00 per session, $10.00 per user/day
- Auto-terminate workflow if limit exceeded
- Alert on cost threshold (80% of limit)
Acceptance Criteria:
- Rate limits enforced at API level
- Tool calls validated against OPA policies
- Cost limits prevent “denial of wallet” scenarios
- All violations logged with user/tenant context
Files to Create/Modify:
backend/guardrails/rate_limiter.py(new)backend/guardrails/policy_engine.py(new)policies/tool_call_policy.rego(new)policies/external_access_policy.rego(new)backend/workflows/agent_workflow.py(modify - add cost tracking)
Task 6.3: Output Guardrails
Priority: High | Effort: 1 week | Dependencies: 6.1
Sub-tasks:
- 6.3.1 Hallucination Detection
- Implement LLM-as-Judge pattern (
backend/guardrails/hallucination_detector.py) - Use GPT-4o-mini or Claude Haiku as judge (cost-effective)
- Compare agent output against retrieved context
- Score: 0.0 (hallucination) to 1.0 (grounded)
- Flag outputs with score < 0.7
- Implement LLM-as-Judge pattern (
- 6.3.2 Topic/Tone Filtering
- Create topic classifier for out-of-scope responses
- Filter inappropriate language using content moderation API
- Block competitor information if not authorized
- Prevent financial/medical advice if not authorized
- 6.3.3 Output Validation Pipeline
- Create
OutputGuardrailsclass - Integrate into agent response pipeline
- Return sanitized output or request human review
- Log all filtered outputs for audit
- Create
Acceptance Criteria:
- Hallucinations detected with >90% accuracy
- Out-of-scope topics filtered automatically
- All filtered outputs logged and reviewed
- Human escalation for high-risk outputs
Files to Create/Modify:
backend/guardrails/hallucination_detector.py(new)backend/guardrails/output_guard.py(new)backend/agents/base.py(modify - add output validation)
Task 6.4: Circuit Breaker Pattern
Priority: Medium | Effort: 0.5 weeks | Dependencies: 6.2, 6.3
Sub-tasks:
- 6.4.1 Circuit Breaker Implementation
- Create
backend/guardrails/circuit_breaker.py - Track consecutive failures per session
- Trip after 3 consecutive failures
- Track low confidence scores (< 0.5)
- Trip on cost threshold exceeded
- Create
- 6.4.2 Human Escalation
- Create escalation workflow (
backend/workflows/escalation_workflow.py) - Send notification to human operator
- Store session state for review
- Allow human to resume or terminate
- Create escalation workflow (
Acceptance Criteria:
- Circuit breaker trips on failure patterns
- Human escalation triggered automatically
- Session state preserved for review
- Metrics tracked for circuit breaker events
Files to Create/Modify:
backend/guardrails/circuit_breaker.py(new)backend/workflows/escalation_workflow.py(new)
Task 6.5: Compliance Mapping
Priority: Medium | Effort: 1 week | Dependencies: 6.1-6.4
Sub-tasks:
- 6.5.1 NIST AI RMF Mapping
- Map existing controls to NIST AI RMF categories
- Document risk assessment for each agent capability
- Create compliance dashboard (
frontend/src/pages/Admin/Compliance.tsx) - Generate compliance reports
- 6.5.2 ASL-3 Preparation (if needed)
- Assess if ASL-3 is required for use case
- Implement real-time classifiers if needed
- Add offline monitors for CBRN threats
Acceptance Criteria:
- All guardrails mapped to NIST AI RMF
- Compliance dashboard shows current posture
- Risk assessments documented for each layer
Files to Create/Modify:
docs/compliance/nist-ai-rmf-mapping.md(new)frontend/src/pages/Admin/Compliance.tsx(new)
Phase 2: Production Reliability (Weeks 5-8)
Layer 3: Cognition - LLM Gateway & Reasoning
Task 3.1: LLM Gateway Implementation
Priority: High | Effort: 2 weeks | Dependencies: None
Sub-tasks:
- 3.1.1 Deploy LiteLLM Gateway
- Set up LiteLLM server (
backend/llm/gateway.py) - Configure provider fallback chains (Azure → Anthropic → Gemini)
- Add load balancing across deployments
- Implement health checks for each provider
- Set up LiteLLM server (
- 3.1.2 Smart Routing
- Create query complexity analyzer (
backend/llm/complexity_analyzer.py) - Route simple tasks to GPT-4o-mini/Claude Haiku
- Route complex reasoning to GPT-4o/Claude Sonnet
- Route code generation to specialized models
- Add routing rules configuration
- Create query complexity analyzer (
- 3.1.3 Cost Optimization
- Track costs per model/provider
- Implement cost-based routing (prefer cheaper models when appropriate)
- Add cost dashboards (
frontend/src/pages/Admin/CostGovernance.tsx)
Acceptance Criteria:
- All LLM calls go through gateway
- Smart routing reduces costs by 40%+
- Fallback works automatically on provider failures
- Cost tracking accurate to $0.01
Files to Create/Modify:
backend/llm/gateway.py(new)backend/llm/complexity_analyzer.py(new)backend/agents/base.py(modify - use gateway)frontend/src/pages/Admin/CostGovernance.tsx(new)
Task 3.2: Structured Output Enforcement
Priority: High | Effort: 1 week | Dependencies: 3.1
Sub-tasks:
- 3.2.1 PydanticAI Integration
- Install and configure PydanticAI
- Define output schemas for all agent responses
- Create
backend/agents/schemas.pywith response types - Integrate into agent base class
- 3.2.2 Self-Correction on Validation Failure
- Catch validation errors
- Feed errors back to model with correction prompt
- Retry up to 3 times
- Log validation failures for analysis
Acceptance Criteria:
- All agent outputs validated against schemas
- Validation failures trigger self-correction
- <5% of responses require manual correction
- Type-safe responses throughout system
Files to Create/Modify:
backend/agents/schemas.py(new)backend/agents/base.py(modify - add PydanticAI)
Task 3.3: Advanced Reasoning Patterns
Priority: Medium | Effort: 1 week | Dependencies: 3.2
Sub-tasks:
- 3.3.1 ReAct Loop Implementation
- Add explicit ReAct pattern to agent reasoning
- Capture thought/action/observation steps
- Store reasoning trace for debugging
- Add ReAct visualization in UI
- 3.3.2 Chain-of-Thought Enforcement
- Add CoT prompting for complex tasks
- Capture reasoning steps in response
- Display reasoning in UI (collapsible)
Acceptance Criteria:
- ReAct loop visible in agent traces
- Reasoning steps captured and displayable
- Improved accuracy on multi-step tasks
Files to Create/Modify:
backend/agents/reasoning.py(new)frontend/src/components/Agent/ReasoningTrace.tsx(new)
Layer 7: Observability - Evaluation & LLMOps
Task 7.1: LLMOps Platform Integration
Priority: High | Effort: 1.5 weeks | Dependencies: None
Sub-tasks:
- 7.1.1 Arize Phoenix Deployment
- Deploy Phoenix server or use cloud service
- Integrate Phoenix SDK into agent workflows
- Send execution traces to Phoenix
- Configure trace visualization
- 7.1.2 LangSmith Integration (optional)
- Add LangSmith for debugging agent paths
- Enable trace replay for failure analysis
- Add LangSmith UI to admin panel
Acceptance Criteria:
- All agent executions traced in Phoenix
- Trace visualization shows full execution path
- Can replay traces for debugging
- Performance metrics visible in dashboard
Files to Create/Modify:
backend/observability/phoenix.py(new)backend/workflows/agent_workflow.py(modify - add Phoenix tracing)
Task 7.2: Evaluation Framework
Priority: High | Effort: 1.5 weeks | Dependencies: 7.1
Sub-tasks:
- 7.2.1 DeepEval Integration
- Install DeepEval framework
- Create golden datasets (
tests/evals/golden_datasets/) - Define evaluation metrics:
- Faithfulness (hallucination detection)
- Answer Relevance
- Context Precision
- Response Completeness
- Create eval test suite (
tests/evals/test_agent_quality.py)
- 7.2.2 Continuous Evaluation in CI/CD
- Add eval step to GitHub Actions
- Run evals on every PR
- Block merge if evals fail
- Track eval scores over time
- 7.2.3 Online Evaluation (LLM-as-Judge)
- Sample 10% of production interactions
- Use GPT-4o as judge for quality scoring
- Track quality drift over time
- Alert on quality degradation
Acceptance Criteria:
- Golden dataset with 50+ test cases
- Eval pipeline runs in CI/CD
- Quality metrics tracked in dashboard
- Alerts on quality degradation
Files to Create/Modify:
tests/evals/golden_datasets/(new directory)tests/evals/test_agent_quality.py(new).github/workflows/evals.yml(new)backend/observability/quality_monitor.py(new)
Task 7.3: Cost Governance
Priority: Medium | Effort: 1 week | Dependencies: 3.1
Sub-tasks:
- 7.3.1 Per-Session Cost Tracking
- Track costs in workflow state
- Store costs in database
- Create cost aggregation queries
- 7.3.2 Cost Dashboards
- Create cost dashboard (
frontend/src/pages/Admin/CostGovernance.tsx) - Show costs per user/tenant/session
- Add cost trends over time
- Implement cost alerts
- Create cost dashboard (
- 7.3.3 Hard Budget Caps
- Implement session cost limits (from Layer 6)
- Add user/tenant daily limits
- Auto-terminate on limit exceeded
Acceptance Criteria:
- Cost tracking accurate to $0.01
- Dashboards show real-time costs
- Budget caps enforced automatically
- Alerts sent on threshold breaches
Files to Create/Modify:
backend/guardrails/cost_tracker.py(new)frontend/src/pages/Admin/CostGovernance.tsx(modify - enhance)
Phase 3: Advanced Capabilities (Weeks 9-12)
Layer 1: Interaction - Generative UI & HITL
Task 1.1: Generative UI Component System
Priority: High | Effort: 2 weeks | Dependencies: None
Sub-tasks:
- 1.1.1 Component Schema System
- Define Zod schemas for UI components
- Create component registry (
frontend/src/components/GenUI/registry.ts) - Implement typed components:
<DataTable />- For tabular data<Chart />- For visualizations<ApprovalCard />- For HITL approvals<Timeline />- For workflow visualization<Form />- For structured inputs
- 1.1.2 Agent Output Parser
- Create parser for structured JSON payloads
- Validate against Zod schemas
- Render components dynamically
- Handle fallback to markdown for unstructured output
- 1.1.3 Component Library
- Build reusable GenUI components
- Add styling and animations
- Test component rendering
- Document component usage
Acceptance Criteria:
- Agents can output structured UI payloads
- Components render correctly from JSON
- Fallback to markdown works seamlessly
- Component library documented
Files to Create/Modify:
frontend/src/components/GenUI/registry.ts(new)frontend/src/components/GenUI/DataTable.tsx(new)frontend/src/components/GenUI/Chart.tsx(new)frontend/src/components/Chat/ChatMessage.tsx(modify - add GenUI support)
Task 1.2: Advanced Streaming
Priority: Medium | Effort: 1 week | Dependencies: 1.1
Sub-tasks:
- 1.2.1 Separate Streams for Text vs Structure
- Create separate WebSocket channels for text and UI updates
- Stream text tokens for conversational elements
- Stream structural updates for UI components
- Sync streams on frontend
- 1.2.2 Progressive Rendering
- Render charts/tables incrementally as data arrives
- Show loading states for incomplete components
- Add smooth transitions
- 1.2.3 Optimistic UI Updates
- Implement optimistic updates for form submissions
- Rollback on error
- Show pending states
Acceptance Criteria:
- Text and UI streams work independently
- Components render progressively
- Optimistic updates improve perceived latency
- Error handling graceful
Files to Create/Modify:
backend/api/routers/chat.py(modify - add separate streams)frontend/src/hooks/useChatStream.ts(modify - handle dual streams)
Task 1.3: Complete HITL UI
Priority: High | Effort: 1 week | Dependencies: 1.1
Sub-tasks:
- 1.3.1 Pending Approvals Component
- Create
frontend/src/pages/Workflows/PendingApprovals.tsx - List all workflows waiting for approval
- Show approval context and proposed actions
- Implement approve/reject/edit actions
- Create
- 1.3.2 Parameter Editing UI
- Create parameter editor component
- Allow editing tool call parameters before execution
- Validate edited parameters
- Submit edited parameters to workflow
- 1.3.3 Real-Time Workflow Status
- Add WebSocket connection for workflow updates
- Show live status in UI
- Display current step and progress
Acceptance Criteria:
- Users can see and approve pending workflows
- Tool parameters editable before execution
- Real-time workflow status visible
- HITL flows complete end-to-end
Files to Create/Modify:
frontend/src/pages/Workflows/PendingApprovals.tsx(new)frontend/src/components/Workflows/ParameterEditor.tsx(new)frontend/src/pages/Workflows/ActiveWorkflows.tsx(modify - add real-time updates)
Layer 4: Memory - GraphRAG & Context Optimization
Task 4.1: GraphRAG Implementation
Priority: High | Effort: 2 weeks | Dependencies: None
Sub-tasks:
- 4.1.1 Knowledge Graph Setup
- Deploy Graphiti (Zep’s knowledge graph) or KuzuDB
- Create entity extraction pipeline
- Extract entities during document ingestion
- Store relationships in graph
- 4.1.2 Multi-Hop Traversal
- Implement graph traversal queries
- Support multi-hop relationship queries
- Add graph query API endpoint
- Integrate into memory search
- 4.1.3 Hybrid Search
- Add BM25 keyword search
- Combine vector + keyword + graph search
- Implement result fusion algorithm
- Tune retrieval based on query type
Acceptance Criteria:
- Knowledge graph stores entities and relationships
- Multi-hop queries work correctly
- Hybrid search improves retrieval accuracy
- Graph queries integrated into agent memory
Files to Create/Modify:
backend/memory/graph.py(new)backend/memory/client.py(modify - add graph search)backend/api/routers/memory.py(modify - add graph endpoints)
Task 4.2: Context Optimization
Priority: Medium | Effort: 1 week | Dependencies: 4.1
Sub-tasks:
- 4.2.1 Automatic Summarization
- Implement summarization after N turns (e.g., 20)
- Preserve key decisions and state changes
- Store summaries in session metadata
- Use summaries for context injection
- 4.2.2 Rolling Window Pattern
- Keep last N messages verbatim (e.g., 10)
- Summarize older messages
- Inject summary + recent messages into context
- Implement anchor summarization for long conversations
- 4.2.3 Context Trimming
- Detect task boundaries
- Remove completed task details from context
- Keep only relevant context for current task
- Monitor context window usage
Acceptance Criteria:
- Summarization reduces context size by 60%+
- Rolling window maintains recent context verbatim
- Context trimming improves relevance
- Context window usage optimized
Files to Create/Modify:
backend/memory/context_optimizer.py(new)backend/agents/base.py(modify - use optimized context)
Phase 4: Enterprise Polish (Weeks 13-16)
Layer 2: Orchestration - Advanced Patterns
Task 2.1: Enhanced Self-Correction
Priority: Medium | Effort: 1 week | Dependencies: 3.3
Sub-tasks:
- 2.1.1 Explicit ReAct Loop
- Implement ReAct pattern in agent reasoning (from Layer 3)
- Add tool output parsing with error detection
- Enable retry with alternative strategy on failures
- Log self-correction attempts
- 2.1.2 Error Recovery
- Detect tool execution failures
- Analyze error messages
- Generate alternative strategies
- Retry with new approach
Acceptance Criteria:
- ReAct loop visible in agent execution
- Self-correction works on tool failures
- Alternative strategies attempted automatically
- Success rate improves by 10%+
Files to Create/Modify:
backend/agents/base.py(modify - enhance ReAct loop)
Task 2.2: Hierarchical Agent Planning
Priority: Medium | Effort: 1.5 weeks | Dependencies: 2.1
Sub-tasks:
- 2.2.1 Planner Agent
- Create
PlannerAgentclass - Decompose complex goals into milestones
- Generate execution plan
- Track milestone completion
- Create
- 2.2.2 Milestone Tracking
- Store milestones in workflow state
- Update milestones as tasks complete
- Display milestones in UI
- Alert on milestone delays
Acceptance Criteria:
- Planner agent creates execution plans
- Milestones tracked and visible
- Complex goals broken down correctly
- Plan execution monitored
Files to Create/Modify:
backend/agents/planner.py(new)frontend/src/components/Workflows/Milestones.tsx(new)
Task 2.3: State Persistence & Branching
Priority: High | Effort: 1.5 weeks | Dependencies: None
Sub-tasks:
- 2.3.1 State Persistence
- Migrate from in-memory dict to Redis/PostgreSQL
- Store session state in database
- Implement state serialization/deserialization
- Add state versioning
- 2.3.2 State Branching
- Implement state forking for “what-if” scenarios
- Create branch from current state
- Execute alternative paths
- Compare branch outcomes
- Merge or discard branches
- 2.3.3 Time Travel Debugging
- Use Temporal history for state replay
- Create UI for state inspection
- Allow rewinding to previous states
- Replay from any point
Acceptance Criteria:
- State persists across restarts
- State branching works for what-if scenarios
- Time travel debugging functional
- State versioning prevents data loss
Files to Create/Modify:
backend/orchestration/state_store.py(new)backend/orchestration/state_branching.py(new)frontend/src/pages/Workflows/StateInspector.tsx(new)
Layer 5: Tools - Sandboxing & Validation
Task 5.1: Sandboxed Code Execution
Priority: Medium | Effort: 2 weeks | Dependencies: 6.2 (policy engine)
Sub-tasks:
- 5.1.1 E2B Integration
- Set up E2B account and API keys
- Create
backend/tools/code_executor.py - Implement sandbox creation and destruction
- Add code execution with timeouts
- 5.1.2 Code Execution Tool
- Create
execute_codetool for agents - Support Python, JavaScript, SQL
- Return execution results or errors
- Add data analysis capabilities (CSV processing, calculations)
- Create
- 5.1.3 Security & Isolation
- Implement network isolation
- Add execution timeouts (30s default)
- Restrict file system access
- Log all code executions
Acceptance Criteria:
- Agents can execute code safely
- Sandboxes isolated from host
- Timeouts prevent infinite loops
- All executions logged and auditable
Files to Create/Modify:
backend/tools/code_executor.py(new)backend/agents/tools.py(modify - add execute_code)
Task 5.2: Tool Validation Middleware
Priority: High | Effort: 1 week | Dependencies: 5.1
Sub-tasks:
- 5.2.1 Pre-Execution Validation
- Create validation middleware layer
- Validate tool parameters against schemas
- Check parameter types and ranges
- Generate structured errors on failure
- 5.2.2 Agent Self-Healing
- Feed validation errors back to agent
- Allow agent to correct parameters
- Retry with corrected parameters
- Log self-healing attempts
- 5.2.3 Parameter Sanitization
- Sanitize all tool parameters
- Prevent injection attacks
- Validate file paths
- Check resource limits
Acceptance Criteria:
- All tool calls validated before execution
- Validation errors trigger self-healing
- Parameter sanitization prevents attacks
- Self-healing success rate >80%
Files to Create/Modify:
backend/tools/validation.py(new)backend/agents/base.py(modify - add validation middleware)
Implementation Timeline
Week 1-4: Phase 1 - Critical Security (Layer 6)
Week 5-8: Phase 2 - Production Reliability (Layers 3, 7)
Week 9-12: Phase 3 - Advanced Capabilities (Layers 1, 4)
Week 13-16: Phase 4 - Enterprise Polish (Layers 2, 5)
Dependencies Map
Layer 6 (Guardrails) → All other layers (must be first)
Layer 3 (Cognition) → Layer 7 (Observability) - cost tracking
Layer 1 (Interaction) → Layer 2 (Orchestration) - HITL workflows
Layer 4 (Memory) → Layer 3 (Cognition) - context injection
Layer 5 (Tools) → Layer 6 (Guardrails) - policy enforcement
Success Metrics
Layer 6: Guardrails
- ✅ 100% of inputs pass through guardrails
- ✅ 0 prompt injection successes
- ✅ 100% PII redaction rate
- ✅ <1% false positive rate
Layer 3: Cognition
- ✅ 40%+ cost reduction via smart routing
- ✅ 99.9%+ uptime via fallback chains
- ✅ <5% validation failure rate
Layer 7: Observability
- ✅ 100% of executions traced
- ✅ Golden dataset with 50+ test cases
- ✅ Quality metrics tracked daily
Layer 1: Interaction
- ✅ GenUI components render correctly
- ✅ HITL approval time <5 minutes
- ✅ Streaming latency <300ms
Layer 4: Memory
- ✅ 60%+ context size reduction
- ✅ Multi-hop queries work correctly
- ✅ Hybrid search improves accuracy
Layer 2: Orchestration
- ✅ State persists across restarts
- ✅ Self-correction success rate >80%
- ✅ Time travel debugging functional
Layer 5: Tools
- ✅ Code execution isolated
- ✅ Validation prevents 95%+ errors
- ✅ Self-healing success rate >80%
Risk Mitigation
High-Risk Areas
- Layer 6 Implementation - Critical for security, must be done first
- State Migration - Risk of data loss during migration
- Cost Tracking - Must be accurate to prevent budget overruns
Mitigation Strategies
- Implement Layer 6 in stages with testing at each stage
- Use feature flags for gradual rollout
- Backup state before migration
- Monitor costs closely during implementation
- Set up alerts for anomalies
Next Steps
- Review this plan with team
- Prioritize tasks based on business needs
- Assign owners for each task
- Set up project tracking (GitHub Projects, Jira, etc.)
- Begin Phase 1 - Critical Security (Layer 6)
Last Updated: December 20, 2024
Document Version: 1.0