# AI Periodic Table β Engram Architecture Mapping
A comprehensive tree-structure mapping of each AI Periodic Table element to Engram's
implementation, with a conceptualized roadmap for future development.
*Baseline: January 5, 2026*
[π Interactive Matrix](ai-periodic-table-matrix.html)
[π Business Plan](/00-strategy/business-plan-ai-periodic-table.html)
[π Wiki](wiki/ai-periodic-table.md)
Element Reference
Symbol
Element
Row
Status
Description
**Pr**
Prompts
R1
π’
Agent system prompts (Elena, Marcus, Sage)
**Em**
Embeddings
R1
π’
Zep automatic vectorization + Tri-Search
**Lg**
LLM
R1
π’
Claude, Gemini, Azure APIM Model Router
**Fc**
Function Call
R2
π’
20+ tools across agents (GitHub, Graph, memory)
**Vx**
Vector
R2
π’
Zep built-in vector store
**Rg**
RAG
R2
π’
Auto context injection every agent turn
**Gr**
Guardrails
R2
π’
Azure Entra ID, RBAC, tenant isolation
**Mm**
Multimodal
R2
π’
Imagen, VoiceLive, diagram generation
**Ag**
Agent
R3
π’
LangGraph personas with tools + memory
**Ft**
Finetune
R3
π΄
Not implemented (roadmap: LoRA, Azure ML)
**Fw**
Framework
R3
π’
Temporal durable workflows
**Rt**
Red-team
R3
π‘
Basic validation, Golden Thread
**Sm**
Small Models
R3
π΄
Not implemented (roadmap: Phi-4, edge)
**Ma**
Multi-agent
R4
π’
Agent delegation via Temporal
**Sy**
Synthetic
R4
π’
Story + diagram + image pipeline
**Gk**
Graph Knowledge
R4
β
Zep temporal knowledge graph (unique!)
**In**
Interpret
R4
π΄
Not implemented (roadmap: explainability)
**Th**
Thinking
R4
π’
LangGraph multi-step reasoning
Visual Overview
AI PERIODIC TABLE β ENGRAM ARCHITECTURE βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββ
β ENGRAM PLATFORM β
β Brain (Zep) + Spine (Temporal) β
βββββββββββββββββββββ¬ββββββββββββββββββ
β
βββββββββββββββββ¬ββββββββββββββββ¬ββββ΄ββββ¬ββββββββββββββββ¬ββββββββββββββββ
β β β β β β ββββββΌβββββ βββββββΌββββββ βββββββΌββββββ β βββββββββββββΌββββββββββββ β β C1 β β C2 β β C3 β β β C4 β β β Reactiveβ β Retrieval β β Orchestr. β β β Validation β β ββββββ¬βββββ βββββββ¬ββββββ βββββββ¬ββββββ β βββββββββββββ¬ββββββββββββ β
β β β β β β
βΌ βΌ βΌ βΌ βΌ βΌ βββββββββββ βββββββββββ ββββββββββββ βββββββββββ βββββββββββ βββββββββββ βPr Em Fc β βVx Ft Sy β βRg Fw Gk β βGr Rt In β βLg Mm Sm β β Th β βAg Ma β β β β β β β β β β β βββββββββββ βββββββββββ ββββββββββββ βββββββββββ βββββββββββ βββββββββββ
Summary Statistics
Status
Count
Elements
π’ Strong
12
Pr, Em, Lg, Fc, Vx, Rg, Gr, Mm, Ag, Fw, Ma, Sy, Th
π‘ Emerging
1
Rt
π΄ Gap
3
Ft, Sm, In
β Unique
1
Gk (Knowledge Graph)
Element-by-Element Tree Mapping
π’ ROW 1: PRIMITIVES (Foundation Layer)
R1 PRIMITIVES βββ Pr (Prompts) ββββββββββββββββββββββββββββββββββββ π’ STRONG β βββ Current Implementation β β βββ backend/agents/elena/agent.py β ElenaAgent.system_prompt β β βββ backend/agents/marcus/agent.py β MarcusAgent.system_prompt β β βββ backend/agents/sage/agent.py β SageAgent.system_prompt β β βββ backend/llm/claude_client.py β SAGE_SYSTEM_PROMPT β β β βββ Key Features β β βββ Context-First Requirements Framework (Elena) β β βββ Calm in the Storm Leadership (Marcus) β β βββ Sage Meridian Storyteller persona β β βββ Enterprise context injection via EnterpriseContext.to_llm_context() β β β βββ Roadmap β βββ [ ] Prompt versioning and A/B testing β βββ [ ] Dynamic prompt composition based on user role β βββ [ ] Prompt performance analytics dashboard β βββ Em (Embeddings) βββββββββββββββββββββββββββββββββ π’ STRONG β βββ Current Implementation β β βββ Zep Cloud β Automatic embedding on message ingestion β β βββ backend/memory/client.py β search_memory() β β βββ backend/etl/ingestion_service.py β Document chunking + embedding β β β βββ Key Features β β βββ Tri-Search (Keyword + Vector + Graph) β β βββ Automatic entity extraction β β βββ Cross-session knowledge compounding β β β βββ Roadmap β βββ [ ] Custom embedding models for domain-specific terms β βββ [ ] Embedding drift detection β βββ [ ] Multi-modal embeddings (text + image) β βββ Lg (LLM) ββββββββββββββββββββββββββββββββββββββββ π’ STRONG
βββ Current Implementation
β βββ backend/agents/base.py β FoundryChatClient
β βββ backend/llm/claude_client.py β ClaudeClient (Anthropic)
β βββ backend/llm/gemini_client.py β GeminiClient (Google)
β βββ Azure APIM Gateway β Model Router pattern
β
βββ Key Features
β βββ Multi-model orchestration (Claude for text, Gemini for visuals)
β βββ Automatic fallback (Anthropic API β Azure APIM)
β βββ Model Router for dynamic model selection
β βββ Token-based authentication (Azure AD + API keys)
β
βββ Roadmap
βββ [ ] Cost-aware model routing (use cheaper models for simple tasks)
βββ [ ] Latency-optimized routing (edge deployment)
βββ [ ] Model performance comparison dashboard
π’ ROW 2: COMPOSITIONS (Integration Layer)
R2 COMPOSITIONS βββ Fc (Function Call) ββββββββββββββββββββββββββββββ π’ STRONG β βββ Current Implementation β β βββ backend/agents/github_tools.py β β β βββ create_github_issue_tool β β β βββ update_github_issue_tool β β β βββ get_project_status_tool β β β βββ list_my_tasks_tool β β β βββ close_task_tool β β β β β βββ backend/agents/elena/agent.py β β β βββ search_memory_tool β β β βββ send_email_tool (Microsoft Graph) β β β βββ list_onedrive_files_tool β β β βββ save_to_onedrive_tool β β β βββ trigger_ingestion_tool β β β βββ run_golden_thread_tool β β β βββ analyze_requirements β β β βββ stakeholder_mapping β β β βββ create_user_story β β β βββ delegate_to_sage β β β β β βββ backend/agents/marcus/agent.py β β β βββ create_project_timeline β β β βββ assess_project_risks β β β βββ create_status_report β β β βββ estimate_effort β β β βββ delegate_to_sage β β β βββ start_bau_flow_tool β β β βββ check_workflow_status_tool β β β β β βββ backend/agents/sage/agent.py β β βββ generate_story β β βββ generate_diagram β β βββ generate_visual β β β βββ Roadmap β βββ [ ] MCP (Model Context Protocol) server implementation β βββ [ ] Tool discovery and dynamic registration β βββ [ ] Tool execution analytics and cost tracking β βββ Vx (Vector) βββββββββββββββββββββββββββββββββββββ π’ STRONG β βββ Zep Cloud β Built-in vector store + Tri-Search β βββ Rg (RAG) ββββββββββββββββββββββββββββββββββββββββ π’ STRONG β βββ Automatic context injection in every agent turn β βββ Gr (Guardrails) βββββββββββββββββββββββββββββββββ π’ STRONG β βββ Azure Entra ID + RBAC + Tenant isolation β βββ Mm (Multimodal) βββββββββββββββββββββββββββββββββ π’ STRONG
βββ Text β Image generation (Gemini/Imagen)
βββ Voice β Text β Voice (VoiceLive)
βββ Story + Image + Diagram bundling
π‘ ROW 3: DEPLOYMENT (Production Layer)
R3 DEPLOYMENT βββ Ag (Agent) ββββββββββββββββββββββββββββββββββββββ π’ STRONG β βββ Elena (Business Analyst), Marcus (PM), Sage (Storyteller) β βββ LangGraph StateGraph + Memory-enriched context β βββ Ft (Finetune) βββββββββββββββββββββββββββββββββββ π΄ GAP β βββ Roadmap: LoRA adapters, Azure AI Fine-tuning β βββ Fw (Framework) ββββββββββββββββββββββββββββββββββ π’ STRONG β βββ Temporal Server β Durable workflow orchestration β βββ Rt (Red-team) βββββββββββββββββββββββββββββββββββ π‘ EMERGING β βββ Basic validation, Golden Thread checks β βββ Sm (Small Models) βββββββββββββββββββββββββββββββ π΄ GAP
βββ Roadmap: Phi-4, Granite, edge deployment
β ROW 4: EMERGING (Innovation Layer)
R4 EMERGING βββ Ma (Multi-agent) ββββββββββββββββββββββββββββββββ π’ STRONG β βββ Agent-to-agent delegation via Temporal workflows β βββ Sy (Synthetic) ββββββββββββββββββββββββββββββββββ π’ STRONG β βββ Story + diagram + image generation pipeline β βββ Gk (Graph Knowledge) ββββββββββββββββββββββββββββ β UNIQUE DIFFERENTIATOR β βββ Zep Cloud β Temporal Knowledge Graph β βββ Automatic entity/relationship extraction β βββ Knowledge compounds across sessions β βββ WHY UNIQUE: Dynamic context orchestration vs static RAG β βββ In (Interpret) ββββββββββββββββββββββββββββββββββ π΄ GAP β βββ Roadmap: "Why did you say that?", attention viz, source attribution β βββ Th (Thinking) βββββββββββββββββββββββββββββββββββ π’ STRONG
βββ LangGraph multi-step reasoning + tool-augmented thinking
Implementation Matrix (Effort vs. Impact)
quadrantChart
title AI Periodic Table Roadmap Matrix
x-axis Low Effort --> High Effort
y-axis Low Impact --> High Impact
quadrant-1 High Impact / High Effort
quadrant-2 High Impact / Low Effort
quadrant-3 Low Impact / Low Effort
quadrant-4 Low Impact / High Effort
"Sm (Small Models)": [0.8, 0.3]
"Ft (Finetune)": [0.7, 0.4]
"In (Interpret)": [0.6, 0.8]
"Rt (Red-team)": [0.6, 0.7]
"Pr (Prompts)": [0.2, 0.2]
"Em (Embeddings)": [0.3, 0.8]
"Lg (LLM)": [0.2, 0.9]
"Gk (Graph)": [0.4, 0.95]
"Ag (Agents)": [0.4, 0.85]
"Sy (Synthetic)": [0.3, 0.6]
Recommendation
- Quadrant 2 (High Impact, Low Effort): Focus on Embeddings (Em), LLM (Lg), and Synthetic (Sy) pipelines. (π’ Completed)
- Quadrant 1 (High Impact, High Effort): The Graph Knowledge (Gk) and Agents (Ag) layers are the core differentiators. (β In Progress)
- Quadrant 4 (Low Impact, High Effort): Small Models (Sm) and Finetuning (Ft) should be deferred until strict cost/latency requirements emerge.
Element-by-Element Tree Mapping
(See full breakdown below)