# AI Periodic Table β†’ Engram Architecture Mapping

    
        A comprehensive tree-structure mapping of each AI Periodic Table element to Engram's
                implementation, with a conceptualized roadmap for future development.
    
    *Baseline: January 5, 2026*



    
        [πŸ“Š Interactive Matrix](ai-periodic-table-matrix.html)
        [πŸ“‹ Business Plan](/00-strategy/business-plan-ai-periodic-table.html)
        [πŸ“š Wiki](wiki/ai-periodic-table.md)

Element Reference

                Symbol
                Element
                Row
                Status
                Description
            
        
        
            
                **Pr**
                Prompts
                R1
                🟒
                Agent system prompts (Elena, Marcus, Sage)
            
            
                **Em**
                Embeddings
                R1
                🟒
                Zep automatic vectorization + Tri-Search
            
            
                **Lg**
                LLM
                R1
                🟒
                Claude, Gemini, Azure APIM Model Router
            
            
                **Fc**
                Function Call
                R2
                🟒
                20+ tools across agents (GitHub, Graph, memory)
            
            
                **Vx**
                Vector
                R2
                🟒
                Zep built-in vector store
            
            
                **Rg**
                RAG
                R2
                🟒
                Auto context injection every agent turn
            
            
                **Gr**
                Guardrails
                R2
                🟒
                Azure Entra ID, RBAC, tenant isolation
            
            
                **Mm**
                Multimodal
                R2
                🟒
                Imagen, VoiceLive, diagram generation
            
            
                **Ag**
                Agent
                R3
                🟒
                LangGraph personas with tools + memory
            
            
                **Ft**
                Finetune
                R3
                πŸ”΄
                Not implemented (roadmap: LoRA, Azure ML)
            
            
                **Fw**
                Framework
                R3
                🟒
                Temporal durable workflows
            
            
                **Rt**
                Red-team
                R3
                🟑
                Basic validation, Golden Thread
            
            
                **Sm**
                Small Models
                R3
                πŸ”΄
                Not implemented (roadmap: Phi-4, edge)
            
            
                **Ma**
                Multi-agent
                R4
                🟒
                Agent delegation via Temporal
            
            
                **Sy**
                Synthetic
                R4
                🟒
                Story + diagram + image pipeline
            
            
                **Gk**
                Graph Knowledge
                R4
                ⭐
                Zep temporal knowledge graph (unique!)
            
            
                **In**
                Interpret
                R4
                πŸ”΄
                Not implemented (roadmap: explainability)
            
            
                **Th**
                Thinking
                R4
                🟒
                LangGraph multi-step reasoning

Visual Overview

    AI PERIODIC TABLE β†’ ENGRAM ARCHITECTURE ═══════════════════════════════════════════════════════════════════════════════

                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                    β”‚         ENGRAM PLATFORM             β”‚
                    β”‚   Brain (Zep) + Spine (Temporal)    β”‚
                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                        β”‚
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”΄β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚               β”‚               β”‚       β”‚               β”‚               β”‚    β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β” β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚    β”‚ C1      β”‚    β”‚ C2        β”‚   β”‚ C3        β”‚ β”‚  β”‚ C4                    β”‚   β”‚    β”‚ Reactiveβ”‚    β”‚ Retrieval β”‚   β”‚ Orchestr. β”‚ β”‚  β”‚ Validation            β”‚   β”‚    β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
    β”‚               β”‚               β”‚       β”‚              β”‚               β”‚
    β–Ό               β–Ό               β–Ό       β–Ό              β–Ό               β–Ό    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”‚Pr Em Fc β”‚    β”‚Vx Ft Sy β”‚    β”‚Rg Fw Gk  β”‚ β”‚Gr Rt In β”‚ β”‚Lg Mm Sm β”‚    β”‚   Th    β”‚    β”‚Ag Ma    β”‚    β”‚         β”‚    β”‚          β”‚ β”‚         β”‚ β”‚         β”‚    β”‚         β”‚    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Summary Statistics

                Status
                Count
                Elements
            
        
        
            
                🟒 Strong
                12
                Pr, Em, Lg, Fc, Vx, Rg, Gr, Mm, Ag, Fw, Ma, Sy, Th
            
            
                🟑 Emerging
                1
                Rt
            
            
                πŸ”΄ Gap
                3
                Ft, Sm, In
            
            
                ⭐ Unique
                1
                Gk (Knowledge Graph)

Element-by-Element Tree Mapping

🟒 ROW 1: PRIMITIVES (Foundation Layer)

    R1 PRIMITIVES β”œβ”€β”€ Pr (Prompts) ──────────────────────────────────── 🟒 STRONG β”‚   β”œβ”€β”€ Current Implementation β”‚   β”‚   β”œβ”€β”€ backend/agents/elena/agent.py β†’ ElenaAgent.system_prompt β”‚   β”‚   β”œβ”€β”€ backend/agents/marcus/agent.py β†’ MarcusAgent.system_prompt β”‚   β”‚   β”œβ”€β”€ backend/agents/sage/agent.py β†’ SageAgent.system_prompt β”‚   β”‚   └── backend/llm/claude_client.py β†’ SAGE_SYSTEM_PROMPT β”‚   β”‚ β”‚   β”œβ”€β”€ Key Features β”‚   β”‚   β”œβ”€β”€ Context-First Requirements Framework (Elena) β”‚   β”‚   β”œβ”€β”€ Calm in the Storm Leadership (Marcus) β”‚   β”‚   β”œβ”€β”€ Sage Meridian Storyteller persona β”‚   β”‚   └── Enterprise context injection via EnterpriseContext.to_llm_context() β”‚   β”‚ β”‚   └── Roadmap β”‚       β”œβ”€β”€ [ ] Prompt versioning and A/B testing β”‚       β”œβ”€β”€ [ ] Dynamic prompt composition based on user role β”‚       └── [ ] Prompt performance analytics dashboard β”‚ β”œβ”€β”€ Em (Embeddings) ───────────────────────────────── 🟒 STRONG β”‚   β”œβ”€β”€ Current Implementation β”‚   β”‚   β”œβ”€β”€ Zep Cloud β†’ Automatic embedding on message ingestion β”‚   β”‚   β”œβ”€β”€ backend/memory/client.py β†’ search_memory() β”‚   β”‚   └── backend/etl/ingestion_service.py β†’ Document chunking + embedding β”‚   β”‚ β”‚   β”œβ”€β”€ Key Features β”‚   β”‚   β”œβ”€β”€ Tri-Search (Keyword + Vector + Graph) β”‚   β”‚   β”œβ”€β”€ Automatic entity extraction β”‚   β”‚   └── Cross-session knowledge compounding β”‚   β”‚ β”‚   └── Roadmap β”‚       β”œβ”€β”€ [ ] Custom embedding models for domain-specific terms β”‚       β”œβ”€β”€ [ ] Embedding drift detection β”‚       └── [ ] Multi-modal embeddings (text + image) β”‚ └── Lg (LLM) ──────────────────────────────────────── 🟒 STRONG
β”œβ”€β”€ Current Implementation
β”‚   β”œβ”€β”€ backend/agents/base.py β†’ FoundryChatClient
β”‚   β”œβ”€β”€ backend/llm/claude_client.py β†’ ClaudeClient (Anthropic)
β”‚   β”œβ”€β”€ backend/llm/gemini_client.py β†’ GeminiClient (Google)
β”‚   └── Azure APIM Gateway β†’ Model Router pattern
β”‚
β”œβ”€β”€ Key Features
β”‚   β”œβ”€β”€ Multi-model orchestration (Claude for text, Gemini for visuals)
β”‚   β”œβ”€β”€ Automatic fallback (Anthropic API β†’ Azure APIM)
β”‚   β”œβ”€β”€ Model Router for dynamic model selection
β”‚   └── Token-based authentication (Azure AD + API keys)
β”‚
└── Roadmap
    β”œβ”€β”€ [ ] Cost-aware model routing (use cheaper models for simple tasks)
    β”œβ”€β”€ [ ] Latency-optimized routing (edge deployment)
    └── [ ] Model performance comparison dashboard

🟒 ROW 2: COMPOSITIONS (Integration Layer)

    R2 COMPOSITIONS β”œβ”€β”€ Fc (Function Call) ────────────────────────────── 🟒 STRONG β”‚   β”œβ”€β”€ Current Implementation β”‚   β”‚   β”œβ”€β”€ backend/agents/github_tools.py β”‚   β”‚   β”‚   β”œβ”€β”€ create_github_issue_tool β”‚   β”‚   β”‚   β”œβ”€β”€ update_github_issue_tool β”‚   β”‚   β”‚   β”œβ”€β”€ get_project_status_tool β”‚   β”‚   β”‚   β”œβ”€β”€ list_my_tasks_tool β”‚   β”‚   β”‚   └── close_task_tool β”‚   β”‚   β”‚ β”‚   β”‚   β”œβ”€β”€ backend/agents/elena/agent.py β”‚   β”‚   β”‚   β”œβ”€β”€ search_memory_tool β”‚   β”‚   β”‚   β”œβ”€β”€ send_email_tool (Microsoft Graph) β”‚   β”‚   β”‚   β”œβ”€β”€ list_onedrive_files_tool β”‚   β”‚   β”‚   β”œβ”€β”€ save_to_onedrive_tool β”‚   β”‚   β”‚   β”œβ”€β”€ trigger_ingestion_tool β”‚   β”‚   β”‚   β”œβ”€β”€ run_golden_thread_tool β”‚   β”‚   β”‚   β”œβ”€β”€ analyze_requirements β”‚   β”‚   β”‚   β”œβ”€β”€ stakeholder_mapping β”‚   β”‚   β”‚   β”œβ”€β”€ create_user_story β”‚   β”‚   β”‚   └── delegate_to_sage β”‚   β”‚   β”‚ β”‚   β”‚   β”œβ”€β”€ backend/agents/marcus/agent.py β”‚   β”‚   β”‚   β”œβ”€β”€ create_project_timeline β”‚   β”‚   β”‚   β”œβ”€β”€ assess_project_risks β”‚   β”‚   β”‚   β”œβ”€β”€ create_status_report β”‚   β”‚   β”‚   β”œβ”€β”€ estimate_effort β”‚   β”‚   β”‚   β”œβ”€β”€ delegate_to_sage β”‚   β”‚   β”‚   β”œβ”€β”€ start_bau_flow_tool β”‚   β”‚   β”‚   └── check_workflow_status_tool β”‚   β”‚   β”‚ β”‚   β”‚   └── backend/agents/sage/agent.py β”‚   β”‚       β”œβ”€β”€ generate_story β”‚   β”‚       β”œβ”€β”€ generate_diagram β”‚   β”‚       └── generate_visual β”‚   β”‚ β”‚   └── Roadmap β”‚       β”œβ”€β”€ [ ] MCP (Model Context Protocol) server implementation β”‚       β”œβ”€β”€ [ ] Tool discovery and dynamic registration β”‚       └── [ ] Tool execution analytics and cost tracking β”‚ β”œβ”€β”€ Vx (Vector) ───────────────────────────────────── 🟒 STRONG β”‚   └── Zep Cloud β†’ Built-in vector store + Tri-Search β”‚ β”œβ”€β”€ Rg (RAG) ──────────────────────────────────────── 🟒 STRONG β”‚   └── Automatic context injection in every agent turn β”‚ β”œβ”€β”€ Gr (Guardrails) ───────────────────────────────── 🟒 STRONG β”‚   └── Azure Entra ID + RBAC + Tenant isolation β”‚ └── Mm (Multimodal) ───────────────────────────────── 🟒 STRONG
β”œβ”€β”€ Text β†’ Image generation (Gemini/Imagen)
β”œβ”€β”€ Voice β†’ Text β†’ Voice (VoiceLive)
└── Story + Image + Diagram bundling

🟑 ROW 3: DEPLOYMENT (Production Layer)

    R3 DEPLOYMENT β”œβ”€β”€ Ag (Agent) ────────────────────────────────────── 🟒 STRONG β”‚   β”œβ”€β”€ Elena (Business Analyst), Marcus (PM), Sage (Storyteller) β”‚   └── LangGraph StateGraph + Memory-enriched context β”‚ β”œβ”€β”€ Ft (Finetune) ─────────────────────────────────── πŸ”΄ GAP β”‚   └── Roadmap: LoRA adapters, Azure AI Fine-tuning β”‚ β”œβ”€β”€ Fw (Framework) ────────────────────────────────── 🟒 STRONG β”‚   └── Temporal Server β†’ Durable workflow orchestration β”‚ β”œβ”€β”€ Rt (Red-team) ─────────────────────────────────── 🟑 EMERGING β”‚   └── Basic validation, Golden Thread checks β”‚ └── Sm (Small Models) ─────────────────────────────── πŸ”΄ GAP
└── Roadmap: Phi-4, Granite, edge deployment

⭐ ROW 4: EMERGING (Innovation Layer)

    R4 EMERGING β”œβ”€β”€ Ma (Multi-agent) ──────────────────────────────── 🟒 STRONG β”‚   └── Agent-to-agent delegation via Temporal workflows β”‚ β”œβ”€β”€ Sy (Synthetic) ────────────────────────────────── 🟒 STRONG β”‚   └── Story + diagram + image generation pipeline β”‚ β”œβ”€β”€ Gk (Graph Knowledge) ──────────────────────────── ⭐ UNIQUE DIFFERENTIATOR β”‚   β”œβ”€β”€ Zep Cloud β†’ Temporal Knowledge Graph β”‚   β”œβ”€β”€ Automatic entity/relationship extraction β”‚   β”œβ”€β”€ Knowledge compounds across sessions β”‚   └── WHY UNIQUE: Dynamic context orchestration vs static RAG β”‚ β”œβ”€β”€ In (Interpret) ────────────────────────────────── πŸ”΄ GAP β”‚   └── Roadmap: "Why did you say that?", attention viz, source attribution β”‚ └── Th (Thinking) ─────────────────────────────────── 🟒 STRONG
└── LangGraph multi-step reasoning + tool-augmented thinking

Implementation Matrix (Effort vs. Impact)

quadrantChart
    title AI Periodic Table Roadmap Matrix
    x-axis Low Effort --> High Effort
    y-axis Low Impact --> High Impact
    quadrant-1 High Impact / High Effort
    quadrant-2 High Impact / Low Effort
    quadrant-3 Low Impact / Low Effort
    quadrant-4 Low Impact / High Effort
    
    "Sm (Small Models)": [0.8, 0.3]
    "Ft (Finetune)": [0.7, 0.4]
    "In (Interpret)": [0.6, 0.8]
    "Rt (Red-team)": [0.6, 0.7]
    "Pr (Prompts)": [0.2, 0.2]
    "Em (Embeddings)": [0.3, 0.8]
    "Lg (LLM)": [0.2, 0.9]
    "Gk (Graph)": [0.4, 0.95]
    "Ag (Agents)": [0.4, 0.85]
    "Sy (Synthetic)": [0.3, 0.6]

Recommendation

  • Quadrant 2 (High Impact, Low Effort): Focus on Embeddings (Em), LLM (Lg), and Synthetic (Sy) pipelines. (🟒 Completed)
  • Quadrant 1 (High Impact, High Effort): The Graph Knowledge (Gk) and Agents (Ag) layers are the core differentiators. (⭐ In Progress)
  • Quadrant 4 (Low Impact, High Effort): Small Models (Sm) and Finetuning (Ft) should be deferred until strict cost/latency requirements emerge.

Element-by-Element Tree Mapping

(See full breakdown below)